Benchmarking


Table of contents
  1. Results
    1. Static Classification
    2. Dynamic Classification
  2. Use Cases


We present two classification experiments performed using the 2019 version of the dataset to infer the main crop types present in each image. In the first experiment, static classification, we treated each individual image as a training instance (static image classification). In the second experiment, dynamic classification we explored the use of a temporal image series as an input.

Classification Experiment

Results

Static Classification

The deep learning models used for the static classification task include the ResNet-50, the DenseNet and the EfficientNet-B0.

Models/Metrics Precision Recall F1-Score Accuracy
DENSENET-121 (RGB) 0.327 ± 0.064 0.330 ± 0.030 0.273 ± 0.058 0.403 ± 0.045
EFFN-B0 (RGB) 0.433 ± 0.042 0.430 ± 0.010 0.410 ± 0.017 0.527 ± 0.012
RES-SCR (RGB) 0.487 ± 0.021 0.473 ± 0.006 0.467 ± 0.012 0.577 ± 0.015
RES (RGB) 0.587 ± 0.040 0.550 ± 0.044 0.553 ± 0.047 0.667 ± 0.032
DENSENET-121 (GNDVI) 0.057 ± 0.029 0.133 ± 0.042 0.060 ± 0.044 0.150 ± 0.053
EFFN-B0 (GNDVI) 0.427 ± 0.015 0.430 ± 0.010 0.413 ± 0.015 0.527 ± 0.006
RES (GNDVI) 0.523 ± 0.067 0.423 ± 0.031 0.413 ± 0.040 0.523 ± 0.031
DENSENET-121 (NDVI) 0.217 ± 0.067 0.183 ± 0.015 0.140 ± 0.030 0.260 ± 0.026
EFFN-B0 (NDVI) 0.343 ± 0.055 0.310 ± 0.052 0.303 ± 0.046 0.400 ± 0.053
RES-SCR (NDVI) 0.280 ± 0.036 0.293 ± 0.012 0.257 ± 0.021 0.370 ± 0.026
RES (NDVI) 0.463 ± 0.031 0.410 ± 0.036 0.0413 ± 0.025 0.517 ± 0.025
DENSENET-121 (NDVI45) 0.187 ± 0.055 0.257 ± 0.035 0.180 ± 0.036 0.293 ± 0.032
EFFN-B0 (NDVI45) 0.470 ± 0.017 0.460 ± 0.010 0.443 ± 0.012 0.543 ± 0.006
RES (NDVI45) 0.480 ± 0.020 0.453 ± 0.015 0.443 ± 0.023 0.547 ± 0.021
DENSENET-121 (OSAVI) 0.213 ± 0.021 0.210 ± 0.044 0.153 ± 0.038 0.257 ± 0.051
EFFN-B0 (OSAVI) 0.493 ± 0.021 0.477 ± 0.006 0.463 ± 0.012 0.567 0.006
RES (OSAVI) 0.533 ± 0.060 0.530 ± 0.026 0.513 ± 0.040 0.617 ± 0.035
DENSENET-121 (PSRI) 0.160 ± 0.020 0.197 ± 0.015 0.147 ± 0.012 0.260 ± 0.017
EFFN-B0 (PSRI) 0.417 ± 0.029 0.393 ± 0.006 0.380 ± 0.010 0.483 ± 0.006
RES-SCR (PSRI) 0.333 ± 0.042 0.297 ± 0.029 0.277 ± 0.029 0.393 ± 0.006
RES (PSRI) 0.437 ± 0.046 0.397 ± 0.012 0.400 ± 0.017 0.483 ± 0.012


Dynamic Classification

The deep learning models used for the dynamic classification task include the 3 Dimensional Convolutional Network (3DCNN) and the Long-Term Recurrent Convolutional Networks (LRCN).

Models/Metrics Precision Recall F1-Score Accuracy
LRCN-64 (RGB) 0.610 ± 0.017 0.637 ± 0.015 0.617 ± 0.013 0.774 ± 0.014
3D-CNN (RGB) 0.610 ± 0.026 0.620 ± 0.000 0.607 ± 0.012 0.773 ± 0.012
LRCN-64 (GNDVI) 0.030 ± 0.000 0.100 ± 0.000 0.040 ± 0.000 0.277 ± 0.006
3D-CNN (GNDVI) 0.287 ± 0.085 0.250 ± 0.066 0.200 ± 0.069 0.313 ± 0.067
LRCN-64 (NDVI) 0.030 ± 0.000 0.100 ± 0.000 0.040 ± 0.000 0.270 ± 0.000
3D-CNN (NDVI) 0.360 ± 0.064 0.373 ± 0.093 0.347 ± 0.104 0.470 ± 0.100
LRCN-64 (NDVI45) 0.123 ± 0.162 0.180 ± 0.139 0.127 ± 0.150 0.313 ± 0.101
3D-CNN (NDVI45) 0.467 ± 0.065 0.387 ± 0.031 0.377 ± 0.040 0.530 ± 0.026
LRCN-64 (OSAVI) 0.140 ± 0.191 0.163 ± 0.110 0.117 ± 0.133 0.300 ± 0.087
3D-CNN (OSAVI) 0433 ± 0.151 0.447 ± 0.136 0.417 ± 0.153 0.570 ± 0.114
LRCN-64 (PSRI) 0.450 ± 0.010 0.467 ± 0.012 0.453 ± 0.012 0.563 ± 0.012
3D-CNN (PSRI) 0.447 ± 0.040 0.350 ± 0.087 0.347 ± 0.087 0.477 ± 0.078


The LRCN and 3D-CNN architectures showed higher average accuracies (0.77 for both models). Our overall results showed that classifiers trained with the triplets outperformed the static models (10% increase in accuracy, 0.773 vs 0.667, p<0.05). Furthermore, more complex models (≥ 5.38 millions of parameters) underperformed in contrast to the 3D-CNN (around 31,000 parameters).

Use Cases

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry’s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.